Evaluation Report

Eurolyser iFOB (Faecal occult blood) Test Kit (ST0200)

Eurolyser Diagnostica GmbH Bayernstraße IIa 5020 Salzburg, AUSTRIA

Tel: +43 662 432100 Fax: +43 662 432100 50

1. Limit of Detection and Limit of Quantitation

Lower Limit of Detection (LLD) is the minimum quantity of the analyte that can be discriminated from background noise with a stated probability (usually 95%).

Lower Limit of Quantification (LLQ) is defined as the minimum quantity of the analyte that the method can reliable detect. Depending on the defined goal for error, the LLQ could be equal to the LLD or higher, but never lower. The lower limit of detection and the lower limit of quantification are determined by repeated measurements (n=20) of the CINa 9 g/L solution, following the manufacturer's package insert T3100 and using the iFOB Control L-I ref: 3900010 from ST0200 Chemicals. This test is run in a BS-300 analyser from Mindray.

Results	
Test n⁰	Result (µg/l)
1	9.6
2	11.8
2 3 4 5 6 7	0
4	0
5	12.3
6	0
	0
8	0
9	0
10	0
11	0
12	15
13	0
14	0
15	0
16	0
17	0
18	0
19	0
20	0
Average	2.435
SD	5.07

The results are calculated according the next formulas:

Lower Limit of Detection (LLD) = Blank value + 3.29 x Standard Deviation (SD)= **19.3 µg Hb/l** ≈ **1.55 µg Hb/g faeces**

Lower Limit of Quantification (LLQ) = Blank value +10 x Standard Deviation (SD) = **53.2 µg Hb/I** ≈ **4.28 µg Hb/g faeces**

Using the collection tube, and according to the faecal mass sample / stick, the sensitivity of the method referred to **µg Hb / g faeces** is:

Cut off 50 μ g/l: 4 μ g Hb / g faeces Cut off 100 μ g/l: 8 μ g Hb / g faeces Cut off 150 μ g/l: 12 μ g Hb / g faeces Cut off 200 μ g/l: 20 μ g Hb/ g faeces

2. Precision (repeatability, reproducibility)

Precision Evaluation analysis have been run on a Cobas Mira instrument and Kroma iT analysers, with two different lots and two different operators. 3 samples of an appropriate haemoglobin concentration levels (low. medium and high) covering the full range of ST0200ity were prepared using the extraction buffer. The samples were aliquoted and stored at -20° C.

The samples were tested during 10 consecutive days, and 10 measurements were run each day, using i-FOB Turbidimetric kit and i-FOB Control L-I ref: 3900010 and L-II ref: 3900015 from ST0200 Chemicals.

COBAS MIRA	n	Mean (µg/l)	Mean (µg Hb/g faeces)	SD	CV (%)
		129.6	10.4	7.1	5.51
Intra-day (repeatability)	10	356.6	28.5	7.0	1.9
(739.4	59.1	10.9	1.5
		129.6	10.4	8.3	7.6
Inter-day (reproducibility)	10	356.6	28.5	17.2	4.8
		739.4	59.1	18.5	2.6

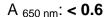
The following table expresses the coefficient of variation (CV) results for each haemoglobin level:

i-FOB Turbidimetric Reagent: Pilot Lot, Site: ST0200 Chemicals Lab, Operator: A

KROMA IT	n	Mean (µg/l)	Mean (µg Hb/g faeces)	SD	CV (%)
		174	13.9	6.84	3.98
Intra-day (repeatability)	10	349	27.9	11.14	3.19
()		775	62	20.2	2.61
		174	13.9	7.9	4.54
Inter-day (reproducibility)	10	349	27.9	14.1	3.98
(- ,		775	62	32.1	4.02

i-FOB Turbidimetric Reagent: # 31499 / 5000, Site: ST0200 Chemicals Lab, Operator: B

3. Uncertainty of the measurement

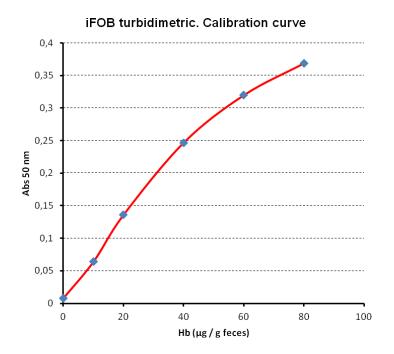

It is expressed as the double of the inter-day precision (reproducibility) obtained for the nearest haemoglobin concentration to the lowest limit of reference range.

Uncertainty value for an Hb concentration of 129.6 μ g/l (10.4 μ g/g faeces) = 7.6 x 2 = **15.2** % (Cobas Mira)

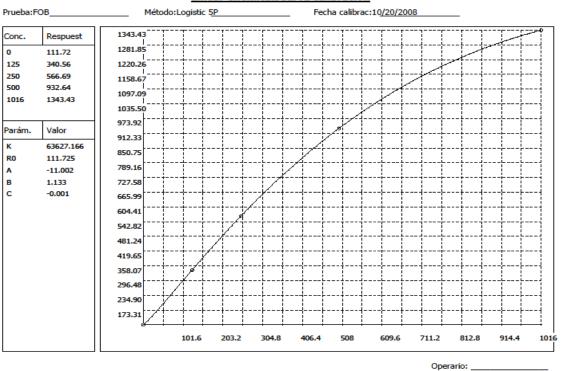
Uncertainty value for an Hb concentration of $174 \mu g/l (13.9 \mu g/g \text{ faeces}) = 4.54 \text{ x } 2 = 9.08 \%$ (Kroma iT)

4. Blank Reagent

Blank reagent at 650 nm is calculated with manual method using the spectrophotometer Thermo. Nicollet Evolution 300 with a cuvette of 1 cm light path.

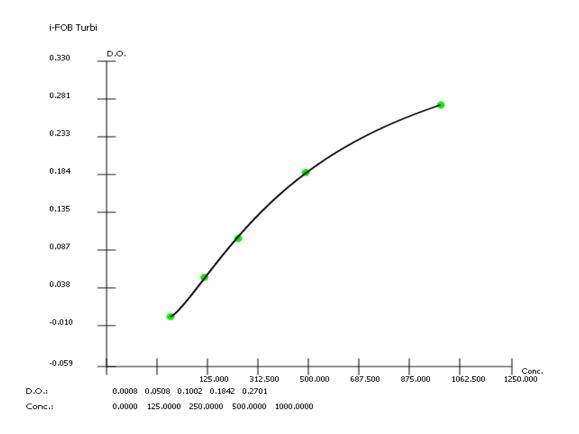

5. Calibration curve

Several samples with different haemoglobin concentrations ranging from 0 to 80 μ g/g faeces (1000 μ g/l), were prepared by dilution of Internal iFOB calibrator in CINa 9 g/L. Two replicates of the samples were tested and the absorbance results were plotted against the haemoglobin concentrations in a calibration curve.


MANUAL METHOD:

Hb (µg/l)	Hb (µg/g faeces)	A ₆₅₀ nm
0	0	0.008
125	10	0.064
250	20	0.136
500	40	0.247
750	60	0.320
1000	80	0.369

Spectrophotometer: Thermo Nicolet Evolution 300. Manual method



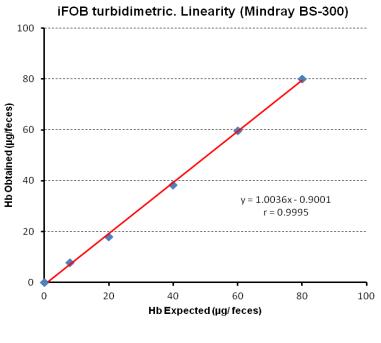
ANALYSER: BS-300 MINDRAY: Units (µg Hb/l)

Linear ChemicalsCurva calibración

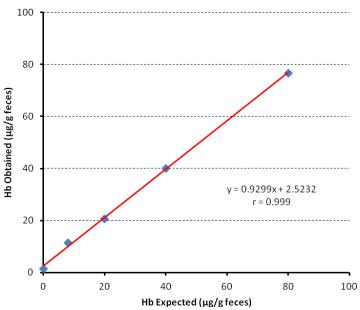
ANALYSER: KROMA IT: Units (µg Hb/I)

6. Limit of Linearity

Linearity of the assay is performed running two replicates of several dilutions on extraction liquid of a sample with a haemoglobin concentration of 80 μ g/g faeces (1000 μ g/l), using the Internal iFOB Calibrator as a calibrator. Measured haemoglobin values are plotted against the expected haemoglobin concentration of the sample dilutions.


The ST0200 regression statistics when correlating the mean reported value to the expected value is the following:

BS-300 MINDRAY


Expected values (µg/l)	Expected values (µg /g faeces)	Reported values (µg/g faeces)
0	0	0
100	8	7.7
250	20	17.9
500	40	38.2
750	60	59.5
1000	80	80

Instrument: BS-300 Mindray

Slope: 1.0 Inetercept: - 0.9 Correlation coefficient (r): > 0.99

iFOB turbidimetry. Linearity (Kroma IT)

KROMA IT

Expected values (µg/l)	Expected values (µg /g faeces)	Reported values (µg/g faeces)
0	0	1.4
100	8	11.5
250	20	20.6
500	40	40.1
1000	80	76.7

Slope: 0.93 Inetercept: +2.52 Correlation coefficient (r): > 0.99

The upper limit of ST0200ity can be established as 1000 µg/l = 80 µg/g faeces

7. Measurement range

Measurement range is calculated as the range between the Lower Limit of Detection (LLD) and the Limit of Linearity (LL).

```
Measurement range: (19.3 – 1000) µg/l or (1.55 - 80) µg/g faeces
```

8. Analytical sensitivity

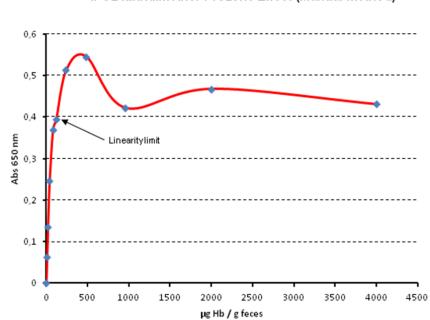
5 replicates of two different dilutions of the iFOB Internal Calibrator, 20 and 40 μ g/g faeces were tested in the same run in a spectrophotometer with a 1 cm light path cuvette with manual method.

The analytical sensitivity was determined as the quotient between the absorbance and the concentration.

Haemoglobin	A _{650 nm}	Average (A _{650 nm})	Sensitivity (mA / μg/l) (mA / μg/g faeces)
250 μg/l or 20 μg / g faeces	0.134 0.137 0.142 0.136 0.139	0.138	0.550
500 μg/l or 40 μg / g faeces	0.238 0.256 0.254 0.238 0.238	0.249	0.490

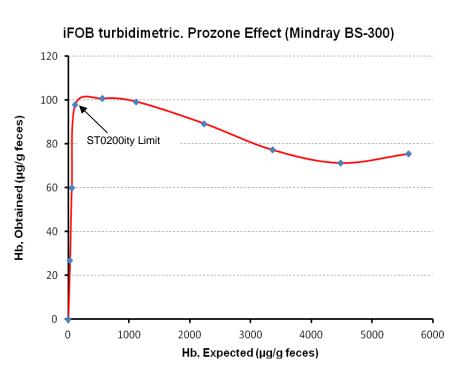
Instrument: Thermo Nicolet Evolution 300. Manual Method.

9. Prozone effect

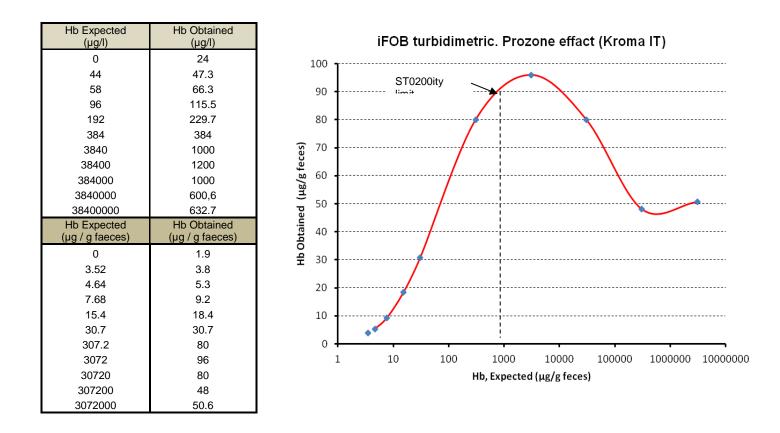

Prozone effect is caused when a sample with a high expected haemoglobin concentration gives a low result (absorbance) and a false haemoglobin concentration is measured, below the ST0200ity limit.

Prozone effect was studied by analyzing two replicates of serial dilutions of a high haemoglobin concentration sample in a stool solution, using an Internal iFOB Calibrator as a calibrator and the Thermo Nicollet Evolution 300 Instrument and BS-300 (Mindray). Prozone effect is calculated as an average of the first haemoglobin dilution that produces prozone effect and the next dilution (first dilution not affected by prozone effect). The highest haemoglobin concentration that has been analyzed is 50000 µg/l or 4000 µg/g faeces.

MANUAL METHOD:


Hb (µg/l)	Hb (µg/g faeces)	Abs 650 nm
0	0	0
125	10	0.064
250	20	0.136
500	40	0.247
1000	80	0.369
1500	120	0.395
3000	240	0.513
6000	480	0.546
12000	960	0.422
25000	2000	0.468
50000	4000	0.431

Instrument: Thermo Nicolet Evolution 300 Method: Manual



BS-300 MINDRAY:

Hb, Expected (µg/l)	Hb, Obtained (µg/l)
0	0
350	336
700	851
1400	1222
7000	1258
14000	1240
28000	1115
42000	965
56000	890
70000	942
Hb, Expected	Hb, Obtained
(µg / g faeces)	(µg / g faeces)
0	0
28.1	29.4
56.3	68.4
112	98.3
560	101
1125	100
2240	89.7
3360	77.6
4480	71.6
5600	75.7

iFOBturbidimetric. Prozone Effect (Manual method)

The prozone effect is up to 3072000 µg Hb (3072 mg Hb) /g faeces

= 38400000 µg Hb (38400 mg Hb) / I

10. Accuracy

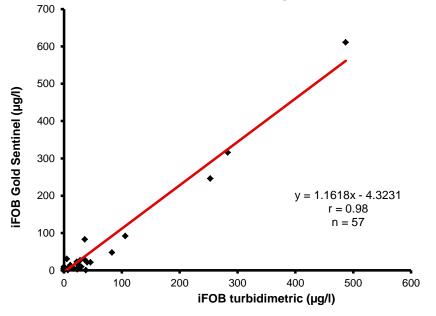
10.1. Reference Material

5 replicates of a commercial i-FOB Calibrator traceable to the International Reference Material CRM 522 were assayed in a Cobas Mira analyser, using an Internal iFOB Calibrator as a calibrator.

The haemoglobin average measured was 63.05 μ g/g faeces (788 μ g/l) and the value of the iFOB Calibrator is 62 μ g/g faeces (775 μ g/l)

Measurements	Hb (µg/l)	Hb (µg/g faeces)
1	793.4	63.5
2	783	62.6
3	754	60.3
4	800.2	64.0
5	807.2	64.6
Average	788	63.0
Accuracy (%)	98	.32

10.2. Comparison of different methods


The i-FOB Turbidimetric method from ST0200 has been compared with FOB Gold (Turbidimetric latex method) from Sentinel and OC Sensor/Diana from Eiken.

SENTIFOB /FOB Gold (SENTINEL) vs i-FOB TURBIDIMETRIC (ST0200)

70 samples from the Hospital Carlo Borromeo from Milan (Italy) that have been evaluated with the FOB-Gold kit on the Modular Instrument from Roche, have been also evaluated with the I-FOB turbidimetric kit used in ST0200.

Samples covering all the analytical range, and some of them with Hb concentrations > 80400 ng/g faeces (1000 μ g/l) were analyzed in duplicate on the Hitachi 717 instrument.

Agreement was assessed by Linear Regression (Slope and Intercept) and Correlation Coefficient by Pearson.

COMPARISON ST0200 reagent vs SENTINEL

Note: samples > 1000 µg/l and outliers have been excluded

Results:	Units	$(\mu g/l)$
----------	-------	-------------

Analysis on Hitachi 717						STOOOD		
ST	[FOB]		Sample ID	Sentinel X	ST0200 Y	Sample ID	Sentinel X	ST0200 Y
ASSAY CODE	[2POINT]:[31]-[50]	ŀ	1	0	2	36	0	1
SAMPLE VOLUME	[13] [2]	·	2	0	3	37	893	1989
R1 VOLUME	[200] [50] [NO]	ŀ	3	0	1	38	487	611
R2 VOLUME	[50] [20] [NO]	ľ	4	22	23	39	40	22
WAVE LENGHT			5	27	7	40	46	22
WAVE LENGHT	[][660]		6	818	1912	41	30	10
	[NONST0200] [4]		7	283	316	42	9	8
CALIB. METHOD	[6]		8	3	5	43	23	17
STD (1) CONC			9	0	3	44	23	3
POS.	[0] - [1]		10	776	23	45	0	0
STD (2) CONC			11	38	1	46	23	5
POS.	[63.5] - [2]	-	12	0	3	47	6	2
STD (3) CONC			13	0	0	48	253	246
POS.	[127] - [3]	·	14 15	0	0	49 50	83 0	48
STD (4) CONC		ŀ	15	0	1	50	0	2
POS.	[254] - [4]	ŀ	10	0	2	52	0	0
STD (5) CONC		·	18	0	2	53	0	4
POS.	[508] - [5]	ŀ	19	35	30	54	7	1
STD (6) CONC			20	36	83	55	17	5
POS.	[1016] - [6]		21	182	646	56	0	1
SD LIMIT	[999.9]		22	28	27	57	1050	2018
DUPLICATE LIMIT	[1000]		23	0	5	58	1025	1981
SENSITIVITY LIMIT			24	106	92	59	1009	1863
	[0]		25	11	14	60	1051	2132
ABS. LIMIT	[32000]		26	0	0	61	203	228
(INC/DEC)	[INCREASE]	-	27	0	6	62	0	4
PROZONE LIMIT	[-32000] [LOWER]	-	28 29	0	2	63	0	4
EXPECTED VALUE	[0] - [10000]	ŀ		5 0	31 0	64	837	1828
PANIC VALUE	[0] - [10000]	ŀ	30 31	0	10	65 66	0 201	11 182
INSTRUMENT		ŀ	32	0	4	67	895	2006
FACTOR	[1.00]		33	1012	2161	68	82	57
			34	0	1	69	951	1626
Comments:		ŀ	35	0	0	70	19	134

Samples 6, 33, 37, 57, 58, 59, 60, 64, 67, 69 had an Hb concentration over the ST0200ity range of ST0200 kit and Sentinel Kit. For instance, a sample of 2149 μ g/l (968 μ g/l for Sentinel) has been diluted up to 1:16 giving a result of 647 μ g/l x 16 = 10352 μ g/l. This would explain the big differences between these two methods regarding the samples with high level of Hb. These discrepancies are due to the different calculation between the two instruments (Modular and Hitachi). Our method gives results over the last calibration point (i.e. 1016 μ g/l for the calibrator used), while Modular instrument does not. The Hospital has a flag on the Roche Modular. As they are not interested into the actual value, they reflect results as "positive" and "negative", and high samples are not post-diluted for investigation.

Samples 10, 21 and 70, give some discrepancies, but confronting them to the results of colonoscopy the results are negative.

When analyzing the results from the point of view of qualitative results, considering different "cut off" levels of Hb, the results are the following:

				off		
Sample ID	50 μg/l (4 μ	g / g faeces)	100 µg/l (8 µg/	g faeces)	150 µg/l (12 µ	ig/ g faeces
oumple ib	Sentinel	ST0200	Sentinel	ST0200	Sentinel	ST0200
1	Negative	Negative	Negative	Negative	Negative	Negative
2	Negative	Negative	Negative	Negative	Negative	Negative
3	Negative	Negative	Negative	Negative	Negative	Negative
4	Negative	Negative	Negative	Negative	Negative	Negative
5	Negative	Negative	Negative	Negative	Negative	Negative
6	Positive	Positive	Positive	Positive	Positive	Positive
7	Positive	Positive	Positive	Positive	Positive	Positive
8	Negative	Negative	Negative	Negative	Negative	Negative
9	Negative	Negative	Negative	Negative	Negative	Negative
10	Positive	Negative	Positive	Negative	Positive	Negative
11	Negative	Negative	Negative	Negative	Negative	Negative
12	Negative	Negative	Negative	Negative	Negative	Negative
13	Negative	Negative	Negative	Negative	Negative	Negative
14	Negative	Negative	Negative	Negative	Negative	Negative
15	Negative	Negative	Negative	Negative	Negative	Negative
16	Negative	Negative	Negative	Negative	Negative	Negative
17	Negative	Negative	Negative	Negative	Negative	Negative
18	Negative	Negative	Negative	Negative	Negative	Negative
19	Negative	Negative	Negative	Negative	Negative	Negative
20	Negative	Positive	Negative	Negative	Negative	Negative
21	Positive	Positive	Positive	Positive	Positive	Positive
22	Negative	Negative	Negative	Negative	Negative	Negative
23	Negative	Negative	Negative	Negative	Negative	Negative
24	Positive	Positive	Positive	Negative	Negative	Negative
25	Negative	Negative	Negative	Negative	Negative	Negative
26	Negative	Negative	Negative	Negative	Negative	Negative
27	Negative	Negative	Negative	Negative	Negative	Negative
28	Negative	Negative	Negative	Negative	Negative	Negative
29	Negative	Negative	Negative	Negative	Negative	Negative
30	Negative	Negative	Negative	Negative	Negative	Negative
31	Negative	Negative	Negative	Negative	Negative	Negative
32	Negative	Negative	Negative	Negative	Negative	Negative
33	Positive	Positive	Positive	Positive	Positive	Positive
34	Negative	Negative	Negative	Negative	Negative	Negative
35	Negative	Negative	Negative	Negative	Negative	Negative
36	Negative	Negative	Negative	Negative	Negative	Negative
37	Positive	Positive	Positive	Positive	Positive	Positive
38	Positive	Positive	Positive	Positive	Positive	Positive
39	Negative	Negative	Negative	Negative	Negative	Negative
40	Negative	Negative	Negative	Negative	Negative	Negative
41	Negative	Negative	Negative	Negative	Negative	Negative
42	Negative	Negative	Negative	Negative	Negative	Negative
43	Negative	Negative	Negative	Negative	Negative	Negative
44	Negative	Negative	Negative	Negative	Negative	Negative
45	Negative	Negative	Negative	Negative	Negative	Negative
46	Negative	Negative	Negative	Negative	Negative	Negative
40	Negative	Negative	Negative	Negative	Negative	Negative
48	Positive	Positive	Positive	Positive	Positive	Positive
48	Positive					
		Negative	Negative	Negative	Negative	Negative
	Negative	Negative	Negative	Negative	Negative	Negative
51	Negative	Negative	Negative	Negative	Negative	Negative
52	Negative	Negative	Negative	Negative	Negative	Negative

54	Negative	Negative	Negative	Negative	Negative	Negative
55	Negative	Negative	Negative	Negative	Negative	Negative
56	Negative	Negative	Negative	Negative	Negative	Negative
57	Positive	Positive	Positive	Positive	Positive	Positive
58	Positive	Positive	Positive	Positive	Positive	Positive
59	Positive	Positive	Positive	Positive	Positive	Positive
60	Positive	Positive	Positive	Positive	Positive	Positive
61	Positive	Positive	Positive	Positive	Positive	Positive
62	Negative	Negative	Negative	Negative	Negative	Negative
63	Negative	Negative	Negative	Negative	Negative	Negative
64	Positive	Positive	Positive	Positive	Positive	Positive
65	Negative	Negative	Negative	Negative	Negative	Negative
66	Positive	Positive	Positive	Positive	Positive	Positive
67	Positive	Positive	Positive	Positive	Positive	Positive
68	Positive	Positive	Negative	Negative	Negative	Negative
69	Positive	Positive	Positive	Positive	Positive	Positive
70	Negative	Positive	Negative	Positive	Negative	Negative

Calculations:

According to the population and purposes, the cut-off is different. As a general role, diagnostic sensitivity and specificity may depends on the cutoff selected:

Cut off (µg/l)	Cut off (µg/g faeces)	Sensitivity (%)	Specificity (%)
50	4	79.4	89.7
100	8	76.5	95.3
150	12	70.6	95.9

The calculations of relative sensitivity and specificity have been made according to the different cut-off.

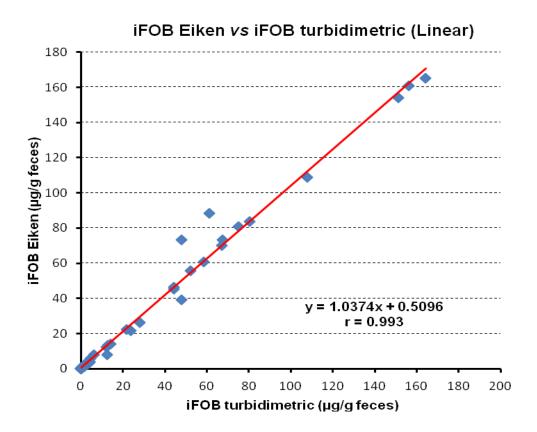
		ן Cut-off : 4 50		
		Sentinel (+)	Total	
ST	0200 (+)	18	2	20
ST	0200 (-)	2	48	50
	Total	20	50	70

	۲ Cut-off: 8 10		
	Sentinel (+)	Total	
ST0200 (+)	16	1	17
ST0200 (-)	2	51	53
Total	18	52	70

Cut-off : 12 µg/g faeces 150 µg/l Sentinel (-) Sentinel (+) Total ST0200 (+) 16 1 17 1 ST0200 (-) 52 53 70 Total 17 53

Relative sensitivity: 90%

Relative specificity: 96%


Relative sensitivity: 88.9 %

Relative specificity: 99%

Relative sensitivity: 94 % Relative specificity: 99 %

OC SENSOR (EIKEN) vs i-FOB TURBIDIMETRIC (reagent used in ST0200)

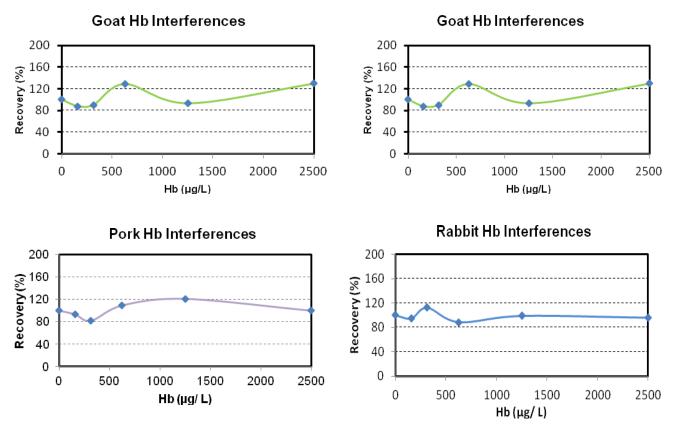
Faecal samples were collected in Eiken sampling collecting tubes and sent to *"Hospital Clínico de Barcelona"* and tested with Eiken and ST0200 Reagents in Diana analyser (Eiken Reagnts) and Kroma IT analyser (ST0200 Reagents).

RESULTS	ST0200 (µg/l)		ST0200 (µg/l)		Units: µg	/ g faeces
SAMPLE	run 1	Run 2	Mean	EIKEN (µg/l)	ST0200 reagent	EIKEN iFOB
1	0	0	0	0	0.0	0.0
2	0	0	0	0	0.0	0.0
3	10.1	0	5.05	0	0.4	0.0
4	17.7	19.1	18.4	16	1.5	1.3
5	26.8	21.4	24.1	22	1.9	1.8
6	44.4	41	42.7	36	3.4	2.9
7	52.6	41.3	46.95	46	3.8	3.7
8	75.7	40.6	58.15	75	4.7	6.0
9	159.6	154.8	157.2	101	12.6	8.1
10	80	79.2	79.6	100	6.4	8.0
11	147.1	157.7	152.4	153	12.2	12.2
12 13	172.5 283.5	182.4 307.1	177.45 295.3	178 272	14.2 23.6	14.2 21.8
13	203.5 581.9	617.8	295.3 599.85	492	23.6 48.0	39.4
14	119.3	1078.5	599.85 598.9	492 915	48.0 47.9	73.2
16	587.3	941.2	764.25	1104	61.1	88.3
17	1554.2	1139.9	1347.05	1360	107.8	108.8
18	2311.2	1792.9	2052.05	2064	164.2	165.1
19	639.4	665.2	652.3	698	52.2	55.8
20	269.4	271.8	270.6	281	21.6	22.5
21	25.1	23.8	24.45	32	2.0	2.6
22	359.2	340.7	349.95	330	28.0	26.4
23	837.9	842.8	842.8	918	67.4	73.4
24	0	0	0	0	0.0	0.0
25	36.7	28.4	32.55	34	2.6	2.7
26	3.6	4.8	4.2	6	0.3	0.5
27	936.1	945	940.55	1010	75.2	80.8
28	56.1	52.8	54.45	47	4.4	3.8
29	1935	1847	1891	1925	151.3	154.0
30	736.6	728.1	732.35	758	58.6	60.6
31	5.7	6.9	6.3	10	0.5	0.8
32	8.4	9.1	8.75	15	0.7	1.2
33	3.2	0	1.6	1	0.1	0.1
34	1012	998.2	1005.1	1046	80.4	83.7
35	0	1.9	0.95	0	0.1	0.0
36	28.3	25.7	27	28	2.2	2.2
37	847.3	831.7	839.5	876	67.2	70.1
38	54.8	50.1	52.45	50	4.2	4.0
39	1925	1980	1952.5	2012	156.2	161.0
40	23.6	18.7	21.15	23	1.7	1.8
41	0	0	0	0	0.0	0.0
42	560.1	549.9	555	568	44.4	45.4
43 44	0 12 9	0 19 7	0	2	0.0	0.2
44 45	13.8	18.7 17.6	16.25 15	18.4 13	1.3	1.5
45 46	12.4 559.4	17.6 549.8	554.6	579	1.2 44.4	1.0 46.3
46 47				579 167	44.4 12.7	
47	157.3	160.6	158.95	107	12.7	13.4

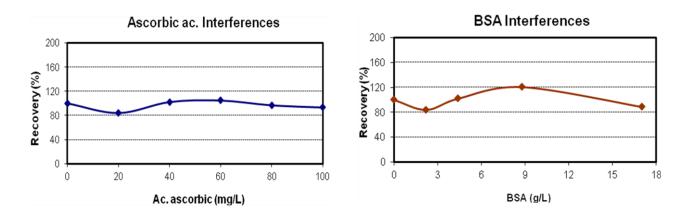
STATISTICAL ANALYSIS

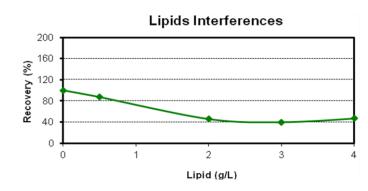
	Cut-off: 8		
	Eiken (+)	Total	
I-FOB turbidimetric (+)	22	0	22
I-FOB turbidimetric (-)	1	24	25
Total	23	24	47

Relative sensitivity: 95.6% Relative specificity: 100%


Interfering substances and cross-reactivity 11.

Several substances supposedly interfering are studied: haemoglobin from bovine, goat, pork, rabbit, and ascorbic ac, lipids, and bovine albumin. Serial concentrations from a high concentration solution of each interfering substance were prepared in a collection solution.


Studied concentrations:


- Bovine haemoglobin: from 156 to 2500 µg/l
- Goat haemoglobin: from 156 to 2500 µg/l
- Pork haemoglobin: from 156 to 2500 µg/l
- Rabbit haemoglobin: from 156 to 2500 µg/l from 0.5 to 5 g/l
- Lipids:
- Ascorbic acid: from 20 to 100 mg/l
- Bovine albumin: 2.2 to 17.5 g/l

HAEMOGLOBIN INTERFERENCES

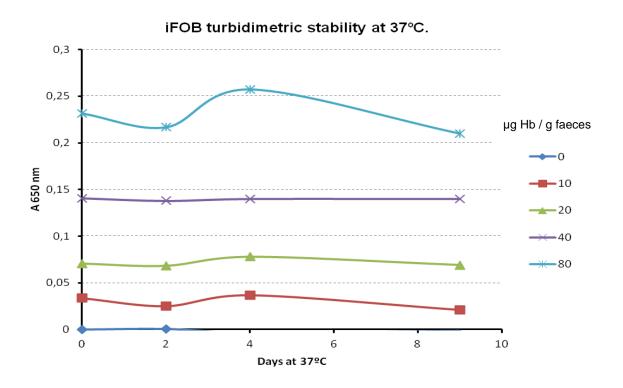
OTHER INTERFERENCES

Conclusions

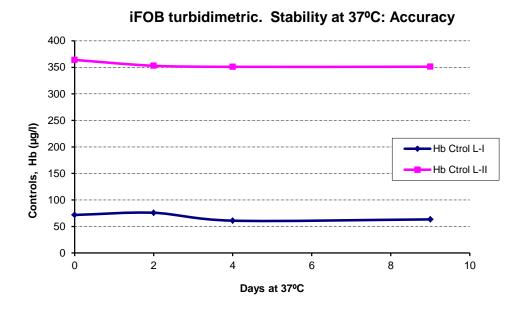
- Bovine haemoglobin: up to 2500 $\mu\text{g/I}$ does not interfere
- Goat haemoglobin: up to 2500 µg/l does not interfere
- Pork haemoglobin: up to 2500 $\mu\text{g/l}$ does not interfere
- Rabbit haemoglobin: up to 2500 $\mu\text{g/I}$ does not interfere
- Lipids (Intralipid): $\geq 2 \text{ g/l interfere}$
- Ascorbic acid:
- up to 100 mg/l does not interfere
- Bovine albumin: up to 17.5 g/l does not interfere

12. Reaction to haemoglobin variants

Hb-variants Level 2 Control from Eurotrol has been used to test the specicificity of iFOB turbidimetric with some haemoglobin variants. This Control contains 3 Hb variants: Hb A (85-95%); HbS (7 – 13%); Hb C (7 – 13%). A dilution 1 x 10^{-5} of this control has been done in CINa 9 g/L to place the Hb concentration into the test range. The results obtained are shown in the table below:


Hb obtained x Dilution Factor (10^5)	Hb expected x Dilution Factor (10^5)	Recovery (%)	
28.1 g/l	26.8 g/l	104.85	

The monoclonal antibody of this reagent recognizes all the 3 variants of Hb of this control as the result is > 100% of recovery.


13. Accelerate Stability: at 37°C

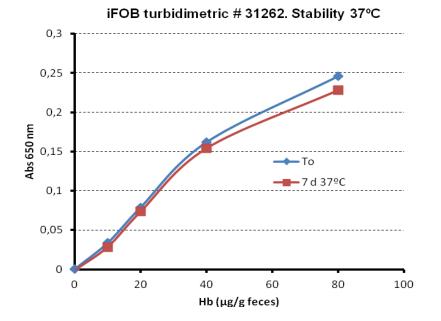
I-FOB turbidimetric Reagents

The stability studies were performed at 37°C. Aliquots of i-FOB Turbidimetric reagents from ST0200 were stressed for 9 days at 37°C. After this time, all aliquots are tested at the same time against two-fold dilutions in CINa 9 g/l of Internal iFOB Calibrator, in a Cobas Mira analyser. Two levels of iFOB controls are included in each run.

∆ A 650 nm	iFOB Calibrator. μg Hb / g faeces or (μg/l)					
Days at 37⁰C	0	10 / (125)	20 / (250)	40 / (500)	80 (1000)	
0	0.00015	0.03365	0.07055	0.14070	0.23145	
2	0.00075	0.02500	0.06155	0.12460	0.21670	
4	-0.00030	0.03690	0.07815	0.15795	0.25735	
9	-0.00125	0.02095	0.04540	0.09865	0.20255	

_	Days at 37⁰C					
Hb CONTROL	0	2	4	9		
L-I (µg/I)	71.7	75.8	60.9	63.3		
Recovery (%)	100	105.7	84.9	88.2		
L-II (µg/l)	364	353	351	351.2		
Recovery (%)	100	97	96.4	96.5		

From the stability results the reagent used in ST0200 establishes a shelf life of 18 months at 2-8°C

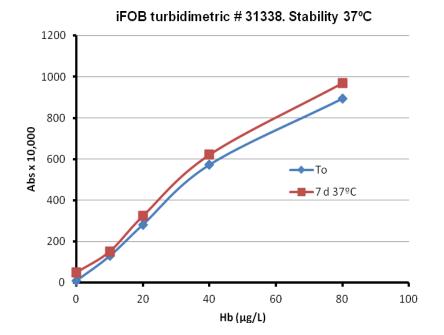

MANUFACTURED LOTS

The stability control of each manufactured lot measures the results of absorbance's at time 0 (To) and after 7 days at 37°C and an accuracy control with two levels of control as well.

i-FOB TURBIDIMETRIC LOT: 31262

∆ A 650 nm	iFOB Calibrator: μg Hb / g faeces or (μg/l)					
Days at 37⁰C	0	10 / (125)	20 / (250)	40 / (500)	80 (1000)	
0	0.00050	0.03385	0.07950	0.16200	0.24615	
7	-0.00118	0.02850	0.07350	0.15405	0.22815	

Instrument: Cobas Mira


		Hb (µg/l)			
Control	Lot	Target	Range	То	7 d 37⁰C
L-I	39065	87	69.7 - 104	88.2	89.7
L-II	39066	394.8	316 - 474	373.6	352.3

Tolerance: Inside range

i-FOB TURBIDIMETRIC LOT: 31338

∆ Abs x 10.000 650 nm	iFOB Calibrator: μg Hb / g faeces or (μg/l)										
Days at 37⁰C	0	10 / (125)	20 / (250)	40 / (500)	80 (1000)						
0	10.54	130.3	282.44	572.85	893.03						
7	5.13	151.91	364.18	721.85	1070.10						

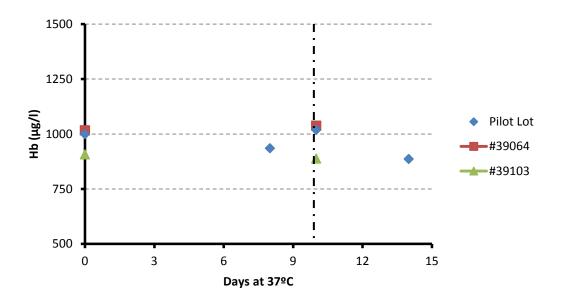
Instrument: BS-300 Mindray

		Hb (µg/l)						
Control	Lot	Target	Range	То	7 d 37⁰C			
L-I	39065	87	69.7-104	87.5	91.5			
L-II	39066	394.8	316 - 474	360	356.5			

Tolerance: Inside range

i-FOB Turbidimetric Calibrator

PILOT LOT


The stability studies were performed at 37°C. Several aliquots of iFOB Calibrator from ST0200 were stressed at different periods of time for a maximum of 14 days at 37°C. After this time, all aliquots are tested using I-FOB turbidimetric Reagents from ST0200 and an Internal iFOB Calibrator, in a Cobas Mira analyser. Two levels of iFOB controls are included in each run.

		Days a	at 37⁰C	
	0	8	9	14
Calibrator (µg/l)	998.6	934.9	1018.4	885.8
Recovery (%)	100	93.6	101.9	88.7

Tolerance: +/- 10%

From the stability results ST0200 establishes a shelf life of 24 months at 2-8°C

iFOB turbidimetric. Stability at 37°C

MANUFACTURED LOTS

Stability control of calibrator measures the Hb concentration at time 0 (To) and after 10 days at 37°C

) טו ו	P9/1)		
i-FOB Calibrator. Lot	То	10 d 37⁰C	Recovery (%)	
39064	1016	1037	97.9	
39103	907	888	97.9	

Hb (µg/l)

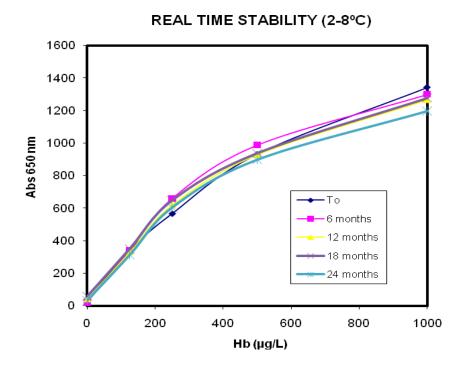
Acceptance tolerance: +/- 10%

14. Real Time Stability: at 2-8°C

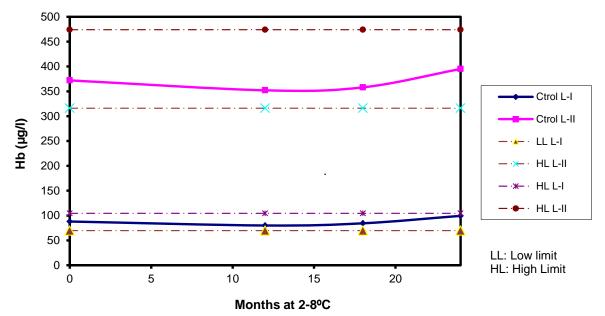
14.1. i-FOB turbidimetric Reagent: Lot 31262

The real time study is performed at 2-8°C. Sensitivity and ST0200ity range is measured after different periods from the manufacturing date. The assays are run in a BS-300 from Mindray, using the Internal iFOB calibrator of 1000 μ g/l. Two levels of iFOB Controls are included in each run.

	-					
CAL (µg/l)	То	6 months	12 months	18 months	24 months	
0	30	20	40	58	32	
125	340	339	329	351	312	
250	566	659	618	649	604	
500	932	988	929	939	898	
1000	1343	1300	1267	1278	1197	

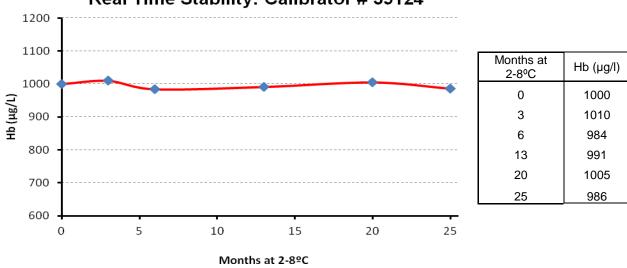

Calibration curve:

Analyser: BS-300 Mindray

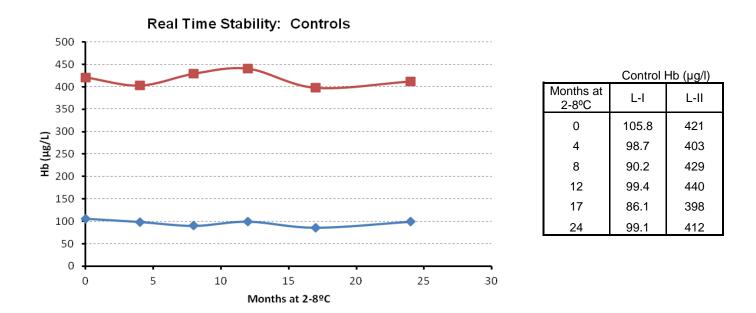

Accuracy: Two iFOB Controls (L-I and L-II)

Months 2-8°C	L-I	L-II
0	88	372
12	80	352
18	84.4	358
24	99.4	395

Analyser: BS-300 Mindray



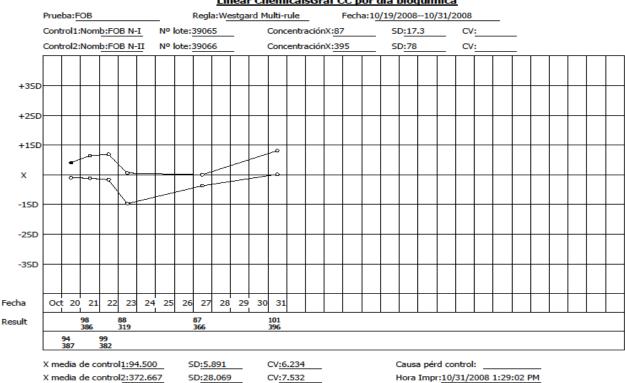
14.2. i-FOB Turbidimetric Calibrator: # 39124


The real time study is performed at 2-8°C. Haemoglobin concentration is measured after different periods from the manufacturing date. The assays are run in a BS-300 from Mindray, using the Internal iFOB calibrator of 1000 μ g/l. Two levels of iFOB Controls are included in each run.

Real Time Stability: Calibrator # 39124

14.3. i-FOB Turbidimetric Controls: # 39104 (L-I) and # 39105 (L-II)

The real time study is performed at 2-8°C. Haemoglobin concentration is measured after different periods from the manufacturing date. The assays are run in a BS-300 from Mindray, using the Internal iFOB calibrator of 1000 μ g/l. Two levels of iFOB Controls are included in each run.

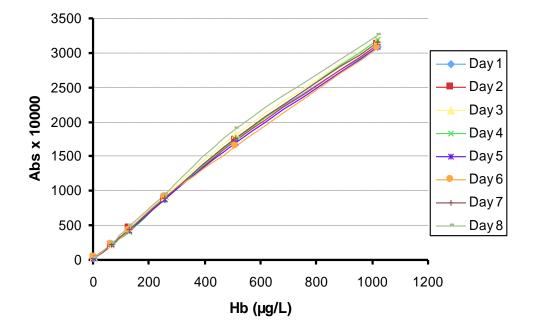


15. Calibration and Reagent "On Board" Stability

On Board Stability was carried out on BS-300 analyser from Mindray and Hitachi 717. Two i-FOB Turbidimetric Controls Level I and Level II from ST0200 were tested during in a period of time, with a calibration run, only the first day. After this period of time, the calibration is stable.

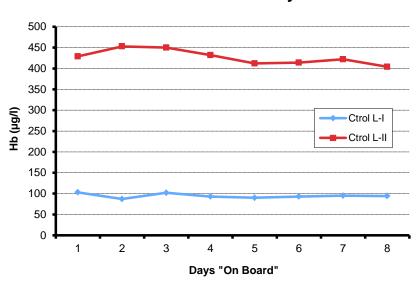
Results:

BS-300 Mindray		Hb (µg/l)												
iFOB Control	Day 1 (10/19/2008)	Day 2	Day 3	Day 4	Day 8	Day 12 (10/31/2008)	Range							
Level I	94	98	99	88	87	101	69.3 - 104.3							
Level II	387	386	382	319	366	396	317- 473							



Linear ChemicalsGráf CC por día bioquímica

Hitachi 717: Calibration Stability


Std	Hb (µg/l)		Abs x 10000									
Siu		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8			
S1	0	37	33	45	36	41	43	41	31			
S2	63.5	227	223	239	235	242	237	234	258			
S3	127	448	461	472	425	441	440	458	506			
S4	254	883	887	921	890	890	918	904	954			
S5	508	1770	1740	1833	1756	1701	1656	1782	1902			
S6	1016	3104	3128	3200	3191	3097	3083	3159	3258			

Calibration Stability

Accuracy stability:

Ctrol	Hb (µg/l)	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8
L-I	69.7 – 104.5	103	87	102	93	90	93	95	94
L-II	316 - 474	429	453	450	432	412	414	422	404

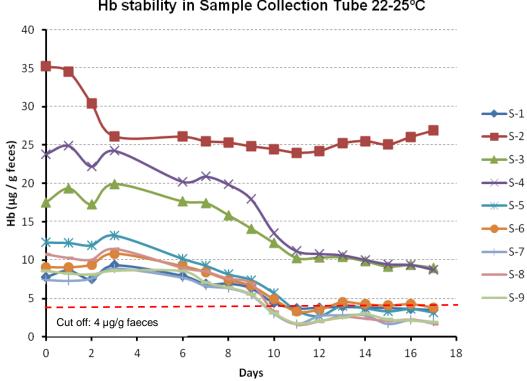
"On Board" Stability

From the stability results ST0200 stablishes a "On Board" calibration stability > 1 week.

16-A. Sample stability in the Sample Collection Tube (RT and 2-8°C)

Faecal samples were collected from healthy voluntary individuals and resulted negative for blood. These samples were then pooled and divided into 9 fractions. Each fraction was mixed with different amounts of fresh human haemoglobin. 9 plastic tubes were filled with 5 mL of ST0200 extraction buffer and each tube spiked with *62 µg of each fecal-haemoglobin fraction. Each tube was divided in two more tubes:

- First tube is stored at room temperature (22-25°C).
- Second tube is stored at 2-8°C.

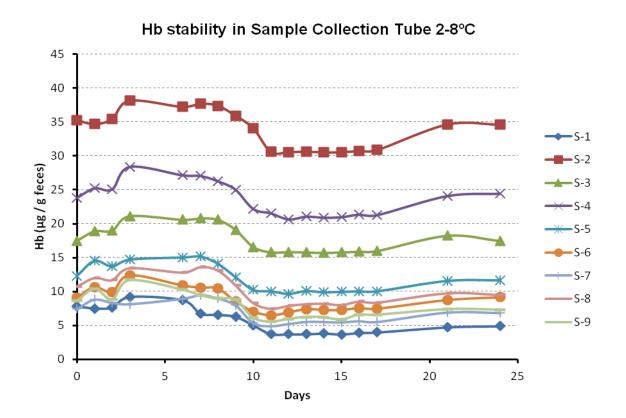

Tubes were tested daily for haemoglobin using I-FOB turbidimetric kit from ST0200. Results are shown below.

(*): This figure corresponds to the amount of faeces dosed for each Sample Collection Tube (20 µg/1.6 ml)

RESULTS				STABILITY	AT RT (2	2-25⁰C)			
				SAMF	PLES (µg/	1)			
DAYS	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9
0	97.8	441	218.6	297.8	153.7	113.6	92.9	134.2	107.7
1	108.3	432.2	241.6	311.3	153	113.3	91.4	128.2	103.2
2	94.2	380.2	215.6	277.6	149.2	117.7	95	125.3	101.8
3	116.8	326.6	248.6	303.2	165.3	135.6	111.3	143	107.9
6	99.8	325.9	220.5	252.8	127.3	115.1	96.5	112	107.3
7	86.0	318.6	218.1	261.3	116.1	105.6	83.1	106.2	88.9
8	87.1	316.4	198.3	248.3	101.9	92.8	79.4	94.3	80.7
9	79.6	310.2	176.5	224.6	92.8	83.4	68.3	86.9	69.4
10	55.8	305.7	153	169.6	71.3	61.4	38	40.6	39.1
11	46.7	299.8	128.5	139.7	42.8	41.8	21.2	20	22.1
12	48	302.6	129.2	135.5	34	44.6	34.2	25	26
13	49.3	315.1	130	133.2	50.8	56.7	35.2	32.4	31.8
14	48.1	318.9	123.5	125.7	46.7	53.2	35.5	29.5	37.5
15	47.2	313.3	114.7	118.6	41.4	51.4	21.3	25.6	28.4
16	46.1	325.6	117	117.5	45.3	53.5	27.7	27.9	26.9
17	44	336	112.5	109.7	39.8	48.1	24.2	21.2	23.8
Decrease	53.8	127.8	104	179.3	112.3	62.3	71.6	108.6	79.4
Average					99.9				

Decrease / day	3.2	7.5	6.1	10.5	6.6	3.7	4.2	6.4	4.7
(%)	3.24	1.70	2.80	3.54	4.30	3.22	4.53	4.76	4.33
Average (%)	3.60								

RESULTS				STABILI	Y AT RT	(22-25°C)			
_		SAM	PLES (µg	Hb/ g fae	<mark>ces)</mark> 1 µg∣	Hb/II = 0.08	µg Hb / g fa	aeces	
DAYS	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9
0	7.82	35.28	17.49	23.82	12.30	9.09	7.43	10.74	8.62
1	8.66	34.58	19.33	24.90	12.24	9.06	7.31	10.26	8.26
2	7.54	30.42	17.25	22.21	11.94	9.42	7.60	10.02	8.14
3	9.34	26.13	19.89	24.26	13.22	10.85	8.90	11.44	8.63
6	7.98	26.07	17.64	20.22	10.18	9.21	7.72	8.96	8.58
7	6.88	25.49	17.45	20.90	9.29	8.45	6.65	8.50	7.11
8	6.97	25.31	15.86	19.86	8.15	7.42	6.35	7.54	6.46
9	6.37	24.82	14.12	17.97	7.42	6.67	5.46	6.95	5.55
10	4.46	24.46	12.24	13.56	5.70	4.91	3.04	3.25	3.13
11	3.74	23.98	10.28	11.18	3.42	3.34	1.70	1.60	1.77
12	3.84	24.21	10.33	10.84	2.72	3.57	2.74	2.00	2.08
13	3.94	25.20	10.40	10.66	4.06	4.53	2.82	2.59	2.54
14	3.84	25.51	9.88	10.06	3.73	4.26	2.84	2.36	3.00
15	3.78	25.06	9.17	9.48	3.31	4.11	1.70	2.05	2.27
16	3.68	26.04	9.36	9.40	3.62	4.28	2.21	2.23	2.15
17	3.52	26.88	9.00	8.78	3.18	3.84	1.94	1.69	1.90
Decrease	4.30	10.22	8.32	14.34	8.98	4.98	5.73	8.69	6.35
Average					7.99				
Decrease / day	0.3	0.6	0.5	0.8	0.5	0.3	0.3	0.5	0.4
(%)	3.24	1.70	2.80	3.54	4.30	3.22	4.53	4.76	4.33
Average (%)					3.60				



Hb stability in Sample Collection Tube 22-25°C

	CUMULATIVE DECREASE AT 22- 25°C (%)									
			(µg/	(1)						
SAMPLE	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	
Initial Conc (µg/l)	87.8	441	228.6	297.8	183.4	133.6	92.9	155.6	127.7	
Initial Conc (µg Hb/ g faeces)	7.82	35.28	17.49	23.82	12.30	9.09	7.43	10.74	8.62	
DAY										
1	-10.7	2.0	-10.5	-4.5	0.5	0.3	1.6	4.5	4.2	
2	3.7	13.8	1.4	6.8	2.9	-3.6	-2.3	6.6	5.5	
3	-19.4	25.9	-13.7	-1.8	-7.5	-19.4	-19.8	-6.6	-0.2	
6	-2.0	26.1	-0.9	15.1	17.2	-1.3	-3.9	16.5	0.4	
7	12.1	27.8	0.2	12.3	24.5	7.0	10.5	20.9	17.5	
8	10.9	28.3	9.3	16.6	33.7	18.3	14.5	29.7	25.1	
9	18.6	29.7	19.3	24.6	39.6	26.6	26.5	35.2	35.6	
10	42.9	30.7	30.0	43.1	53.6	46.0	59.1	69.7	63.7	
11	52.2	32.0	41.2	53.1	72.2	63.2	77.2	85.1	79.5	
12	50.9	31.4	40.9	54.5	77.9	60.7	63.2	81.4	75.9	
13	49.6	28.6	40.6	55.3	67.0	50.1	62.1	75.9	70.5	
14	50.9	27.7	43.5	57.8	69.6	53.2	61.8	78.1	65.2	
15	51.7	29.0	47.6	60.2	73.1	54.8	77.1	80.9	73.7	
16	52.9	26.2	46.5	60.5	70.5	52.9	70.2	79.2	75.1	
17	55.0	23.8	48.5	63.2	74.1	57.7	74.0	84.2	77.9	
RECOVERY (%)	45.0	76.2	51.5	36.8	25.9	42.3	26.0	15.8	22.1	

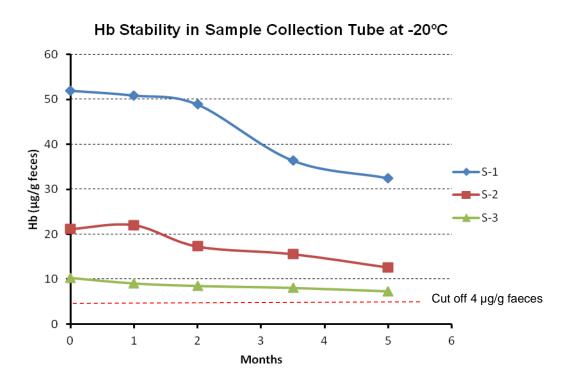
RESULTS				STAB	ILITY AT 2	-8ºC			
-				SAI	MPLES (μg	/I)			
DAYS	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9
0	97.8	441	218.6	297.8	153.7	113.6	92.9	134.2	107.7
1	93.9	433.5	236.3	315.4	181.7	133.2	110.2	150.3	130.3
2	95.5	443	237.5	313.5	171.3	124.3	104.3	146.3	110.9
3	114.9	476.5	264.2	354.7	184.1	154.9	101.9	168.3	146.5
6	108.9	465.2	257.6	339.3	187.9	136.2	111.9	160.4	128.6
7	84.4	470.8	260.1	338.1	189.7	132.3	118.6	170.5	118.2
8	82.1	467.3	257.6	328.4	176.4	130.4	112.4	164.1	112.4
9	78.6	448.9	239.1	312.7	151.6	106.7	99.8	136.7	110.1
10	63	426	207.4	277.6	128.1	88.3	67.3	103.8	76.4
11	46.7	382.6	197.4	269.6	125.6	81.3	61.4	93.25	69.4
12	46.5	382.2	197.8	258.4	120.8	86.6	65.6	98.8	74.3
13	46.5	383	197.4	263.4	126	92.7	69.3	101.9	78.1
14	47.8	381.8	196.2	261.5	123.7	91	69.2	102.8	77.2
15	46.3	381.9	197.3	262.4	124.7	90.9	68.4	100.3	73.4
16	48.8	384.5	198.6	267.2	125.4	94.6	70.7	106.8	82.4
17	49.8	385.8	199.6	266.1	125.5	93.3	69.1	104.7	82.1
21	59.2	432.9	228.1	301.1	144.7	109.4	86.5	122	92.5
24	61.2	432.6	218.4	305.6	145.8	114.5	85.7	119	91.4
Decrease	36.6	8.4	0.2	-7.8	7.9	-0.9	7.2	15.2	16.3
Average					9.23				
Decrease/day	1.5	0.3	0.0	-0.3	0.3	0.0	0.3	0.6	0.7
(%)	1.56	0.08	0.00	-0.11	0.21	-0.03	0.32	0.47	0.63
Average (%)					0.35				

RESULTS				STAE	BILITY AT	2-8ºC			
		SAN	/IPLES (µg	Hb/ g fae	ces) 1 µg	Hb/l = 0.08	µg Hb / g fa	eces	
DAYS	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9
0	7.82	35.28	17.49	23.82	12.30	9.09	7.43	10.74	8.62
1	7.51	34.68	18.90	25.23	14.54	10.66	8.82	12.02	10.42
2	7.64	35.44	19.00	25.08	13.70	9.94	8.34	11.70	8.87
3	9.19	38.12	21.14	28.38	14.73	12.39	8.15	13.46	11.72
6	8.71	37.22	20.61	27.14	15.03	10.90	8.95	12.83	10.29
7	6.75	37.67	20.81	27.05	15.18	10.58	9.49	13.64	9.46
8	6.57	37.38	20.61	26.27	14.11	10.43	8.99	13.13	8.99
9	6.29	35.91	19.13	25.02	12.13	8.54	7.98	10.94	8.81
10	5.04	34.08	16.59	22.20	10.25	7.06	5.38	8.30	6.11
11	3.73	30.60	15.79	21.57	10.05	6.50	4.91	7.46	5.55
12	3.72	30.58	15.82	20.67	9.66	6.93	5.24	7.90	5.94
13	3.72	30.64	15.79	21.07	10.08	7.42	5.54	8.15	6.24
14	3.82	30.54	15.70	20.92	9.89	7.28	5.53	8.22	6.18
15	3.70	30.55	15.78	20.99	9.97	7.27	5.47	8.02	5.87
16	3.90	30.76	15.89	21.37	10.03	7.56	5.66	8.54	6.59
17	3.98	30.86	15.97	21.28	10.04	7.46	5.52	8.38	6.56
21	4.73	34.63	18.25	24.09	11.58	8.75	6.92	9.76	7.40
24	4.90	34.61	17.47	24.45	11.66	9.16	6.86	9.52	7.31
Decrease	2.928	0.672	0.016	-0.624	0.632	-0.072	0.576	1.216	1.304
Average					0.74				
Decrease/day	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
(%)	1.56	0.08	0.00	-0.11	0.21	-0.03	0.32	0.47	0.63
Average (%)					0.35				

	С	UMULAT	IVE DECR	EASE AT	2-8ºC (%))				
	(µg/l)									
SAMPLE	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	
Initial Conc (µg/l)	87.8	441	228.6	297.8	183.4	133.6	92.9	155.6	127.7	
Initial Conc (µg Hb/ g faeces)	7.82	35.28	17.49	23.82	12.30	9.09	7.43	10.74	8.62	
DAY		•	•	•	•	•	•	•	•	
1	4.0	1.7	-8.1	-5.9	-18.2	-17.3	-18.6	-12.0	-21.0	
2	2.4	-0.5	-8.6	-5.3	-11.5	-9.4	-12.3	-9.0	-3.0	
3	-17.5	-8.0	-20.9	-19.1	-19.8	-36.4	-9.7	-25.4	-36.0	
6	-11.3	-5.5	-17.8	-13.9	-22.3	-19.9	-20.5	-19.5	-19.4	
7	13.7	-6.8	-19.0	-13.5	-23.4	-16.4	-27.7	-27.1	-9.7	
8	16.1	-6.0	-17.8	-10.3	-14.8	-14.8	-21.0	-22.3	-4.4	
9	19.6	-1.8	-9.4	-5.0	1.4	6.1	-7.4	-1.9	-2.2	
10	35.6	3.4	5.1	6.8	16.7	22.3	27.6	22.7	29.1	
11	52.3	13.3	9.7	9.5	18.3	28.5	33.9	30.5	35.6	
12	52.5	13.3	9.5	13.2	21.4	23.8	29.4	26.4	31.0	
13	52.5	13.2	9.7	11.6	18.0	18.4	25.4	24.1	27.5	
14	51.1	13.4	10.2	12.2	19.6	19.9	25.6	23.4	28.3	
15	52.7	13.4	9.7	11.9	18.9	20.0	26.4	25.3	31.9	
16	50.1	12.8	9.1	10.3	18.4	16.8	23.9	20.5	23.5	
17	39.5	12.5	8.7	10.7	18.4	17.9	25.7	22.0	23.8	
21	37.0	0.1	3.5	4.5	20.4	17.9	21.5	18.9	29.0	
24	37.4	1.9	0.1	-2.6	5.1	-0.8	7.8	11.3	15.1	
RECOVERY (%)	62.6	98.1	99.9	102.6	94.9	100.8	92.2	88.7	84.9	

16-B. Sample stability (Continuation) in the Sample Collection Tube (-20°C, 30°C and 35°C)

New stability study has been run at -20°C and 29-35°C.


16-B.1. Stability at -20°C

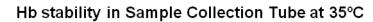
Faecal samples were collected from healthy voluntary individuals and resulted negative for blood. These samples were then pooled and divided into 3 fractions. Each fraction was mixed with different amounts of fresh human haemoglobin (high, medium and low level). 3 plastic tubes were filled with 5 mL of extraction buffer and each tube spiked with *62 μ g of each fecal-haemoglobin sample. Tubes were stored at -20°C.

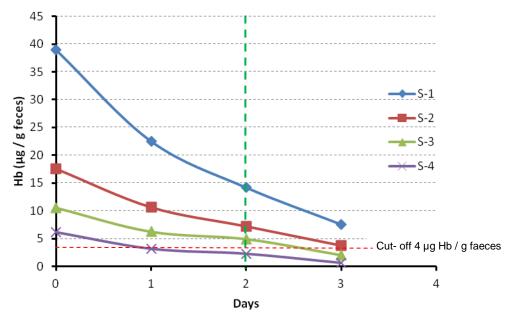
Tubes were monthly tested for haemoglobin using I-FOB Turbidimetric kit from ST0200. Results are shown below. (*): This figure corresponds to the amount of faeces dosed for each Sample Collection Tube (20 µg/1.6 ml)

	STA	BILITY AT ·	-20ºC				
RESULTS	SAMPLES (µg/I)						
MONTHS	S-1	S-2	S-3				
0	649.5	264.6	128.9				
1	636.1	275.3	113.4				
2	611	216	106.1				
3,5	455	195	100.5				
5	406	158	90.8				
Decrease	243.5	106.6	38.1				
Decrease/month	48.7	21.3	7.6				
%	7.5	8.05	5.9				
Average (%)		7.15					

STAB	STABILITY AT -20°C							
SAMPLES (μg Hb/ g faeces) 1 μg Hb/l = 0.08 μg Hb / g faeces								
S-1	S-2	S-3						
51.96	21.17	10.3						
50.9	22.02	9.06						
48.88	17.28	8.49						
36.4	15.6	8.04						
32.48	12.64	7.26						
19.5	8.5	3						
3.9	1.7	0.6						
7.5	7.5 8.05 5.9							
	7.15							

16-B.2. Stability at 34-35°C


Faecal samples were collected from healthy voluntary individuals and resulted negative for blood. These samples were then pooled and divided into 4 fractions. Each fraction was mixed with different amounts of fresh human haemoglobin. 4 plastic tubes were filled with 5 mL of ST0200 extraction buffer and each tube spiked with *62 μ g of each fecal-haemoglobin fraction.


- Tubes are icubated at (35°C).

Tubes were daily tested for haemoglobin using I-FOB turbidimetric kit from ST0200. Results are shown below.

(*): This quantity corresponds to the quantity of faeces dosed for each Sample Collection Tube (20 µg/1.6 ml)

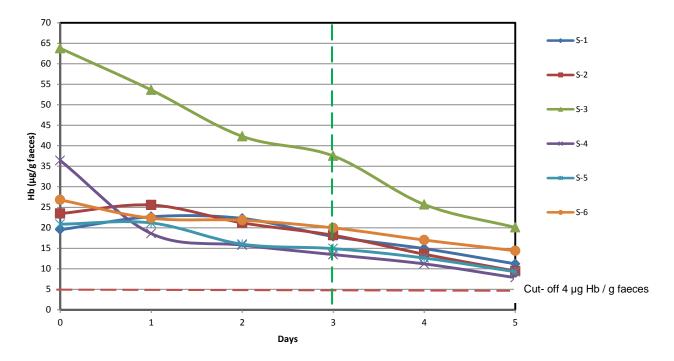
RESULTS		Stability at 34 °C				Stability at 34 °C			
	sample (µg Hb/l)					sai	mple (µg Hb	/ g faeces)
Days	1	2	3	4		1	2	3	4
0	486.9	218.9	132.3	76.4		38.9	17.5	10.6	6.1
1	281.1	132.8	77.8	39.2		22.5	10.6	6.2	3.1
2	177	90	61	28		14.1	7.2	4.9	2.2
3	94	47	24.5	7.5		7.5	3.8	2.0	0.6
Decrease	392.9	171.9	107.8	68.9		31.4	13.8	8.6	5.5
Decre / day	131.0	57.3	35.9	23.0	Ĩ	10.5	4.6	2.9	1.8
(%)	26.9	26.2	27.2	30.1	Ī	26.9	26.2	27.2	30.1
Average (%)		27.6					27.6		

16-B.3. Sample stability in the Sample Collection Tube (30°C)

New stability study has been run at 30°C.

Faecal samples were collected from healthy voluntary individuals and resulted negative for blood. These samples were then pooled and divided into 6 fractions. Each fraction was mixed with different amounts of fresh human haemoglobin. 6 plastic tubes were filled with 5 mL of ST0200 extraction buffer and each tube spiked with *62 μ g of each fecal-haemoglobin fraction.

- Tubes are icubated to the incubator at 30°C


Tubes were daily tested for haemoglobin using I-FOB turbidimetric kit from ST0200. Results are shown below.

(*): This quantity corresponds to the quantity of faeces dosed for each Sample Collection Tube (20 µg/1.6 ml)

		STABILITY AT 30°C							
RESULTS	Samples (µg/l)								
DAYS	S-1	S-2	S-3	S-4	S-5	S-6			
0	244	293.4	797	455	261	335			
1	283.6	319.3	670	232.4	264.8	279.1			
2	278.5	265	528.7	197	200	273			
3	223.4	227.1	469	168.3	186.4	249.7			
4	186.5	169.4	321	139.9	157.8	212.6			
5	140.0	118.0	251.0	98.0	116.0	180.0			
Decrease	104.0	175.4	546.0	357.0	145.0	155.0			
Average			247	7.07					
Decrease / day	20.8	35.1	109.2	71.4	29.0	31.0			
(%)	8.52	11.96	13.70	15.69	11.11	9.25			
Average (%)			11	.71					

RESULTS			STABILIT	Y AT 30°C					
RESULTS	Samples (µg Hb/g faeces)								
DAYS	S-1	S-2	S-3	S-4	S-5	S-6			
0	19.520	23.472	63.760	36.400	20.880	26.800			
1	22.688	25.544	53.600	18.592	21.184	22.328			
2	22.280	21.200	42.296	15.760	16.000	21.840			
3	17.872	18.168	37.520	13.464	14.912	19.976			
4	14.920	13.552	25.680	11.192	12.624	17.008			
5	11.200	9.440	20.080	7.840	9.280	14.400			
Decrease	8.3	14.0	43.7	28.6	12	12			
Average			19	.77					
Decrease / day	1.7	2.8	8.7	5.7	2.3	2.5			
(%)	8.52	11.96	13.70	15.69	11.11	9.25			
Average (%)			11.	.71					

From the results it can be concluded that haemoglobin in the collection tube is stable, at least:

- 10 days at 2-8°C

- 7 at room temperature (20-25°C)

- 3 days at 25-30°C

Temperatures (30°C and over) and time can affect the test result.

Positivity results may depend on initial Hb concentration and the selected "cut off".

17. Carryover Test

Sample carryover was assessed according the following procedure: Solutions of human Hb were prepared using the collection tube buffer. 1 sample (A) with high Hb concentrations (> 5000 μ g/l) and 1 sample (B) with low Hb concentrations (300 μ g/l) were prepared. Sample (A) was aliquoted in 5 aliquots (A1, A2, A3, A4, A5) and sample (B) was aliquoted in 5 aliquotes (B1, B2, B3, B4, B5). Samples were tested in Kroma IT instrument with the following sequence: B1 (A1, A2, A3, A4, B1, B2, B3, B4) and repeated 3 times. The carry over factor K was calculated as follow:

$$K (carry over) = \left[\begin{array}{c} B1 \\ \hline B_{average} \end{array} - 1 \right] \times 100 \qquad B_{average} = (B2 + B3 + B4 + B5) / 4$$

SAMPLE	Run 1	Run 2	Run 3
A1	> 1000	> 1000	> 1000
A2	> 1000	> 1000	> 1000
A3	> 1000	> 1000	> 1000
A4	> 1000	> 1000	> 1000
A5	> 1000	> 1000	> 1000
B1	309	319	323
B2	314	319	318
B3	307	317	323
B4	310	315	324
B5	316	310	309
К	-0.90 %	-1.17 %	1.57 %

Tolerance: K < 5%. There is no carry over effect.

18. Inter-Lot (Reagents) variability

Inter-lot variability has been studied in regard to the accuracy variability of different manufactured lots against 8 reference samples with values assigned with an Internal Hb Calibrator traceable to Primary Reference Material CRM 522 (IRMM) and stored freeze-dried at -70°C.

Reference samples are aliquoted and stored at -70°C. One aliquot of each sample is thawed at room temperature for each manufactured lot before to run a test.

Reagents of each manufactured lot are calibrated with the Internal Hb calibrator. Two levels of iFOB controls are included in each run.

# 31414					
# 31414	Expected (E)	Obtained (O)	Rate O/E	Average	Tolerance
Samples	µg Hb/l	µg Hb/l	Rale 0/E	Average	range
1	540	567	1.05		
2	423	434	1.03		
3	112	121	1.08		
4	0	2		1.06	0.9 - 1.1
5	76	83	1.09		
6	1896	> 1000			
7	26	27	1.04		
8	139	145	1.04		
Ctrol L-I	89.6	86.15	0.96	Tolerance Range	
Ctrol L-II	380.8	353	0.93	+/- 2	20%

# 31450					
# 31450	Expected (E)	Obtained (O)	Rate O/E	Average	Tolerance
Samples	µg Hb/k	µg Hb/k	Rale 0/E	Average	range
1	540	554	1.03		
2	423	419	0.99		
3	112	115	1.03		
4	0	0		1.01	0.9 - 1.1
5	76	71	0.93		
6	1896	>1000			
7	26	29	1.12		
8	139	129	0.93		
Ctrol L-I	89.6	118	1.32	Tolerance Range	
Ctrol L-II	38.,8	397	1.04	+/- 20%	

# 31500					
# 31300	Expected (E)	Obtained (O)	Rate O/E	Average	Tolerance
Samples	µg Hb/l	µg Hb/l		Avelage	range
1	540	550	1.02		
2	423	426	1.01		
3	112	108	0.96		
4	0	1		1.02	0.9 - 1.1
5	76	79	1.04		
6	1896	> 1000			
7	26	29	1.12		
8	139	131	0.94		
Ctrol L-I	114	120	1.05	Tolerance Range	
Ctrol L-II	470	426	0.91	+/- 2	20%

Inter-Lot	Variability:	1.03 %
-----------	--------------	--------

19. Sample collection tube imprecision

3 fecal samples spiked with different concentrations of human haemoglobin were prepared from a fecal pool. 5 Collection Tubes were loaded onto each of the 3 fecal samples. Tubes were mixed on a roller for 30 minutes prior to analysis. Hb on each tube is determined with repeated measurements (n=2) following the manufacturer's package insert in Kroma IT instrument.

Results are shown below:

	SAMPLES (µg Hb/g faeces)			
Tubes	1	2	3	
1	48.8	7.8	32.6	
2	58.9	8.2	35.2	
3	76.3	10.1	24.9	
4	68.5	10.9	26.0	
5	44.9	10.7	26.9	
AVERAGE	59.5	9.5	29.1	
SD	13.2	1.4	4.5	
CV (%)	22.1	15.1	15.6	

DIAGNOSTIC CHARACTERISTICS

Table 3 shows the Faecal Occult Blood Levels detected according to Colonoscopy and Pathology findings. (Vilkin Alex. et al. *American Journal of Gastroenterology*. 2005; 100 (11): 2519-2525)

Table 3			
Diagnosis	No.	Faecal Hb (µg/l) (mean +/- SD)	Significance*
Normal [†]	381	29.1 +/- 103.8	
Adenomas			
All	113	231.9 +/- 567.5	NS
Non-AAP	85	58.0 +/- 156.5	NS
AAP	28	759.8 +/- 935.7	p < 0.01
Cancer	6	1154.3 +/- 793.0	p < 0.01
CRC+AAP	34	829.4 +/- 913.8	p < 0.01

AAP = advanced adenomatous polyps; CRC = colorectal cancer

* As compared to the normal group

† Includes 64 patients with only hyperplasic polyps

Haemoglobin quantification allows selection of a suitable threshold level for fellow-up colonoscopy. Table 4 shows the sensitivity and specificity for Significant Colorectal Neoplasia at differing faecal levels. (Vilkin Alex. et al. *American Journal of Gastroenterology*. 2005; 100 (11): 2519-2525).

I able 4			
Faecal Hb (µg/l)	Faecal Hb (µg/ g faeces)	Sensitivity (%)	Specificity (%)
50	4	79.4	89.7
75	6	76.5	93.3
100	8	76.5	95.3
125	10	70.6	95.7
150	12	70.6	95.9
200	16	64.7	96.3

Table 4

Number of Significant Colorectal Neoplasia = 34 (6 CRC and 28 AAP)

Number of Differing Faecal Hb Levels = 500 (utilizing the highest of the three I-FOBT measurements in each patient.

With this study, we can confirm that I-FOBT threshold of 100 μ g/l (8 μ g Hb / g faeces) allow detecting all the cancers and the majority of advanced adenomas, with a sensitivity of 76.5% and acceptable specificity of 95.3%. This means that in this group of high risk and asymptomatic patients, all cases of cancer and the most advances adenomas would be detected and a negative test would provide a very high degree of certainty that there was no clinically significant colorectal neoplasia at this round of screening.

Physiological faecal occult blood has been estimated to be 0.31 +/- 0.09 mg/g stool (*Schwartz S. et al. Gastroenterology 1985. 89: 19-26*). 0.1 – 0.2 mg/g stool (*Yoshida Y. et al. Gastroenterology 1986; 90: abstr: 1699*) Equivalence between faces and haemoglobin: 2 nL of blood \approx 0.3 µg haemoglobin / g stool

BIBLIOGRAPHY

- 1. Screening for Colorectal Cancer. Hiroshi Saito. MD. Dis Colon rectum 2000; 43 (10) : S78-S84.
- 2. Colorectal cancer Screening. Mc.Loughlin RM. O'Morain CA. World J Gastroenterology 2006; 12(42) 6747-6750.
- Choice of Faecal Occult Blood Test for Colorectal Cancer Screening: Recommendations Based on Performance Characteristics in Population Studies. A WHO (World Health Organization) and OMED (World Organization for Digestive Endoscopy) Report. Graeme P. et al. American Journal of Gastroenterology 2002; 97: 2499-2507
- 4. Evaluation of the optimum-cut off point in immunochemical occult blood testing in screening for colorectal cancer. Nakama H. et al. *European Journal of Cancer 2001; 37 398 401.*
- 5. Colonoscopic Evaluation of Immunochemical Faecal Occult Blood for Detection of Colorectal neoplasia. Nakama H. et al. *Hepato-Gastroenterology 1999; 46: 228-231.*
- 6. Characteristics of colorectal cancer with false negative result on immunochemical faecal occult blood test. Nakama H. et al. *Journal of Medical Screening 1996; 3: 115-118.*
- 7. Immunological Detection of Faecal Occult Blood from Upper Digestive Tract Diseases. Nakama H. et al. *Hepato-Gastroenterology* 1998; 45: 752-754.
- 8. Validity of immunological faecal occult blood screening for colorectal cancer: follow up study. Nakama H. Journal of Medical Screening 1996; 3: 63-65
- 9. Sensitivity of latex agglutination faecal occult blood test in the Florence District population-based colorectal cancer screening programme. Castiglioni G. et al. British Journal of Cancer 2007; 96: 1750 1754.
- 10. Ultrasensitive Latex-Agglutination-Test for the Specific Immunochemical Detection and Quantification of Faecal Occult Blood Loss. *Heinrich HC. et al. Klin Wochenschr* 1983; 61: 756-767.
- 11. Apport des test immunoloqiques de recherché de sang occult dans les selles por le dépistage du cancer colorectal. Launoy G. Berchi C. Bull Cancer 2005 ; 92(10) : 885-90.
- 12. A quantitative immunochemical faecal occult test is more efficient for detecting significant colorectal neoplasia than a sensitive guaic test. Levi Z. et al. Aliment Pharmacol Ther 2006; 23: 1359-1364.
- 13. Sensitivity and Specificity of Several Immunochemical Test for Colorectal Cancer. Nakama H. et al. Hepato-Gastroenterology 1998; 45: 1579-1582.
- 14. Diagnostic value of Immunochemical Faecal Occult Test for Small Colorectal Neoplasms. Fattah A. et al. Aur J Med Res 1997: 2: 227-230.
- 15. Performance Characteristics and Evaluation of an Automated-Developed and quantitative. Immunochemical. Faecal Occult Blood Screening Test. *Vilkin A. et al. American Journal of Gastroenterology 2005: 100: 2519-2525.*
- 16. Accuracy of Immunological Faecal Occult Blood Testing for Colorectal cancer screening. Nakama H. et al. Preventive Medicine 1994; 23: 309-313.
- 17. A quantitative Immunological Faecal Occult Blood Test for Colorectal Neoplasia. Levi Z. et al. Ann Intern Med 2007; 146: 244-255.
- 18. Tietz Textbook of Clinical Chemistry. Carl A. Burtis. Ph. D.
- 19. NCCLS EP7-P.
- 20. NCCLS EP9-P.